
Chapter 3 

From theory to time series* 

Peter Hingley1 and Walter G Park2, 

1 Financial Controlling and Statistics, European Patent Office, Munich, Germany 
2 Department of Economics, American University, Washington, DC, US  

1 Introduction 

In order to develop forecasting models for numbers of patent filings, it is 
important to consider that patents protect more than just intellectual prop-
erty; since they are an intrinsic component of the larger economic picture. 
This occurs through the process of innovation, technological and scientific 
change, economic productivity and growth. In this chapter, we will show 
one particular theoretical formulation of the underlying process that leads 
to patenting. Then we will briefly review the various types of time series 
based regression analysis that are available and show how they could be 
used to fit a model within a framework of econometric methodology that 
uses techniques of cointegration and error correction. Various approaches 
to time series could be used and this book necessarily concentrates on only 
some of them.  

2 A theoretical model 

This section develops a conceptual model of international patenting flows 
as a basis for the empirical analysis. The following model is adapted from 
Eaton and Kortum (1996), Kortum and Lerner (1998), and Park (2001). In 
this approach, a decision-theoretic model of patenting is formulated where 
inventors weigh the costs and benefits of filing for a patent. Other, more 
macro level, approaches are possible; for example, Abdih and Joutz (2005) 
use time-series methods (including cointegration analyses, see Sect. 3.1) to 

                                                      
*  Frederick Joutz and Robert Trost contributed to Sect. 3.1 during the preliminary 

phase of the research programme. 
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derive a knowledge production function which relates patent filings to the 
past stock of filings and to the number of R&D scientists and engineers. 

First some definitions and notation are in order. Let the source country 
be the country of origin of patent applications (or the country to which pa-
tents are granted). Let the destination country be the country in which a pa-
tent application is filed (or the country which grants a patent right). For 
now, we are primarily interested in the special case where the destination 
is not a specific country but a regional office (such as the EPO).  

The variations in international patenting depend on three kinds of heter-
ogeneity: (1) market heterogeneities (some destinations are more attractive 
than others); (2) invention heterogeneities (some inventions are more valu-
able than others); (3) heterogeneity between source countries (some source 
countries are more inventive than others).  

Let the source country be indexed by i and the destination country by j, 
such that i = j refers to domestic patent applications, and i  j to foreign pa-
tent applications. Let Pij denote the number of patent applications from 
country i to country j. Each source country produces each period a flow of 
inventions. Let i denote this flow of ideas, some of which may be patent-
able. Of these, some fraction, fij, is applied for a patent in country j1. Hence 
the number of patent applications from country i in country j is:  

Pij = i fij (1) 

We will model each of the three components on the right hand of this 
equation. First, we assume inventive output to be produced according to a 
linearly homogeneous production function.  

1 2 1 2
1

i i i i
R S L ,      (2) 

where  > 0 and R denotes the stock of research and development (R&D) 
capital, S the supply of scientists and engineers, and L labor. The expo-
nents (β 1, β 2, . . . ) represent elasticities: the percentage change in in-
ventive output for a 1% change in input.  

It will be shown that those inventions which cross a particular quality 
threshold will be the ones for which patents are sought in the destination 
market. To develop this idea, assume that each of the various inventions of 
the source country can be indexed by its “quality” level, associated say 
with the inventive step of an invention. The quality level is assumed to be 

                                                      
1 Of course, this is not to say that they are "patentable" – only that patent applica-

tions are filed for them. Whether inventions qualify or meet the standards of pa-
tentability (as set out in country j's laws) is determined at the patent granting 
phase. 
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a random variable, Q, drawn from a negative exponential distribution. Let 
the cumulative distribution function be as follows.  

F(q) = Pr (Q < q) = 1 – exp (-ψ q) , (3) 

This essentially captures the stylized fact that the distribution of invention 
quality is skewed: a small percentage of the top inventions account for a 
large majority of the total value of patent rights.2 It can be seen from the 
fact that F’(q) > 0 and F’’(q) < 0. Thus the median quality is less than the 
mean quality (hence the distribution of Q is positively skewed – or skewed 
to the right).  

The mean inventive step from such a distribution is 1/ψ . An invention 
of size q is assumed to augment a firm’s productivity by a factor of exp(q). 
For example, if A is an index of productivity, the new level of productivity 
would be A’ = exp(q) A. Thus, under this formulation, q is the growth rate 
of productivity. Firm productivity could be enhanced either because the 
invention improves production potential or is a cost-saving innovation. We 
assume that the productivity increase is reflected in firm profits. A tracta-
ble formulation is the following.  

 = (q) = exp(q)  ,  where ’(q) > 0 ,  

and  denotes the instantaneous flow of profits and 0 some base flow. 
The derivative of  with respect to q under this formulation is of course 

assumed to be positive. However, it is also necessary to adjust the level of 
a firm’s profits due to imitation activities. Because of imitation or in-
fringement, the returns to inventions are not fully appropriable. In each 
market or destination j, firms face hazards of imitation. Assume that imita-
tion acts like a tax on profits, and denote by h the rate at which profits can 
actually be appropriated. Thus net instantaneous profits are  

 = h exp(q)0 (4) 

Where 0 < h < 1. Since h < 1, this signifies that the returns are imperfectly 
appropriated and a value of h = 0 denotes that the returns are completely 
dissipated. However, with patent protection the ability to appropriate in-
creases, depending on the strength of the intellectual property regime. Let 
 denote the increase in the rate of appropriation due to patent protection. 
 is assumed to be a positive function of the strength of patent rights3. Thus 
with patent protection, the rate at which returns are appropriated equals 

                                                      
2 See Putnam (1996) for some empirical evidence and review of the literature.  
3  If the enforcement of patent rights is completely ineffective or if patent protec-

tion is, for some reason, not necessary for the appropriation of investment re-
turns, then  would be zero. 
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h + , where 0 < h +  < 14. The value of a firm equals the presented dis-
counted value of the future stream of profits, and depends on whether or 
not a firm has a patent. With a patent, the value is  

PAT 0

00

(h ) exp(q)
V (h ) exp(q) exp( rt)dt

r

   
       

(5) 

where r is the real interest rate.  
Without a patent, the value of a firm is the above expression with  set 

to zero:  

NO PAT 0

00

h exp(q)
V h exp(q) exp( rt) dt

r

 
     

(6) 

Hence the value of patent protection is:  

PAT NO PAT 0
exp(q)

V V V
r


     

(7) 

That is, a patent in market j enables the patentee to purchase a reduction in 
the incidence of imitation, the benefit from which is reflected in an in-
crease in firm value. Thus, a firm will seek patent protection if the net ben-
efit of patenting exceeds the cost of filing for protection.  

PAT NO PAT

V V V c     (8) 

where c denotes the cost of obtaining a patent (e.g. filing fees, agent fees, 
and possibly translation fees).  

The underlying logic is that inventors have means other than patent pro-
tection to appropriate the rewards from their innovation (such as lead 
times, reputation, secrecy). Thus the value of a patent is the incremental re-
turn an inventor can get above and beyond what can be realized by alterna-
tive (non-patenting) means.  

Equation (8) helps determine which of the source country inventions 
will be applied for patent protection. A critical threshold quality of inven-
tions can be identified using (7) and (8), namely:  

0

r c
q * ln



 
 
 

 
(9) 

                                                      
4  Note that the increase in appropriability could have been modeled multiplica-

tively (as h). However, the results are qualitatively similar but analytically 
less tractable. 
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The more expensive it is to file a patent (i.e. the higher c is), the higher the 
quality threshold (indicating that only inventions of higher quality are 
worth patenting). Furthermore, the stronger the patent regime (i.e. the 
higher  is), the lower the quality threshold. Thus, not surprisingly, patent 
rights are more valuable, holding other factors constant, if patent protec-
tion is stronger. A higher base flow of profits (0) also contributes to a 
lower critical threshold quality. Firms that in general face larger markets 
(or produce goods and services that the destination market more highly 
values) are likely to have a higher base flow of profits.  

The number of patents filed can now be determined. Recall the cumula-
tive distribution function F(q). Given a critical threshold quality q*, F(q*) 
is the fraction of source country inventions that are not patented and  
1 - F(q*) = exp(-q*) is the fraction that are. Thus, using our notation 
above, the third term in Eq. (1) is:  

j

ij

j j

r c
f exp( q*)



  
 

 
 
 

 
(10) 

The subscript j has been brought back to clarify that it is the filing cost and 
the strength of patent rights of the destination that matter. The base flow of 
profits 0 has been renamed j to indicate that the profits would be derived 
from exploiting inventions in the destination market. Note that while these 
profits are derived from the destination market, they accrue to the firm in 
source country i. Now, putting it all together by substituting (2) and (10) 
into (1), yields the prediction for patenting flows from i to j:  

1 2 1 2
j1

ij i i i

j j

rc
P R S L



    
 

 
 
 

 
(11) 

Taking natural logs of both sides of (11) yields:  

 

   

ij i i
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i i i

j c j
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ln ln c


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        

     

     
     
       

(12) 

where  denotes the error term5. 
Empirical measures of these variables are available; for example, data 

on research and development expenditures and science and engineering 

                                                      
5  Furthermore, the parameters in (11) are functions of previous parameters; i.e.  

0 = ln  - ln r,  1 = 1,  2 = 2,   =  = , and  c = -. 
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personnel can be used for R and S respectively. Patent filing, translation (if 
any), and search costs can be used for c. An index of patent strength can 
also be used for .6 

In Eq. (12), the base flow of profits, j, depend on the characteristics of 
the destination market. For example, the size of the destination market 
(e.g. the markets of the member countries that comprise the EPO) should 
influence the profitability of commercializing innovations. As a measure 
of the market size, the real gross domestic product (GDP) of the destina-
tion could be employed. For example, the GDPs of the European Patent 
Convention (EPC) contracting states could be summed (each year) to pro-
vide a measure of the market size of the EPC area. Another modification to 
(12) is to add time subscripts since data on international patenting are 
available over time. Finally, given the panel data nature, the error term 
may consist of important individual (country) effects, which may be fixed 
or random. The individual effect may capture any specific interaction ef-
fect that individual source countries have with the EPO.  

Thus the equation to be estimated is:  

 

   

ijt i i

0 1 2 jt

it i i

jt c jt it

P R S
ln ln ln ln GDPC

L L L

ln IPR ln c





      

     

          
      

(13) 

The error term is motivated by the fact that some profitable inventions fail 
to be patented while some unprofitable ones are patented. Note that, in 
(13), j refers to the EPO. Thus, the dependent variable is the natural log of 
EPO patent applications from country i divided by the labor force in coun-
try i.  

Equation (13) constitutes a basic model specification for explaining pa-
tenting behavior in the EPO. The underlying premise is that inventive and 
patenting behaviors respond to economic incentives (due to market size, 
patenting costs, and property rights) and to technological capabilities (such 
as R&D resources and productivity).  

3 Time series regression based approaches 

Variants of the model that is developed in Eq. (13) are discussed in  
Chap. 7, where a time series approach is used to fit the models to available 
data sets on EPO filings. However, in this book there are several other con-

                                                      
6  See, for example, Ginarte and Park (1997). 
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tributions involving time series analyses, and we would now like to intro-
duce methods that are in principle available. 

The problem involves setting up a regression analysis based system that 
is consistent with an economic formulation of the problem. In an empirical 
regression setting, it is typical that the series to be analysed contains a ra-
ther short set of data and so estimation can proceed for only a severely lim-
ited number of parameters. It is unlikely that the full economic formulation 
can be realised in the analysis, since parameters may be essentially collin-
ear and indistinguishable. This is the question of identifiability of a regres-
sion model and the basic rule of thumb is to take the simplest alternative 
that is adequate for the data. 

In the self determining approach, the historical development of the pa-
tent series itself is used to project the future trend. Usually this is done 
within the framework of Box-Jenkins based ARIMA methods, state space 
models or vector autoregression (VAR) models. Chapter 4 introduces these 
techniques and they appear again in later chapters. 

In the predictive approaches, concomitant series of other variables are 
used to explain the movements in the patent series. Extensions of the 
above mentioned techniques are generally available to cope with this situa-
tion. Chapters 5 to 7 deal with these kinds of models. 

Typically, series of pooled national research and development expendi-
tures (R&D) or gross domestic product (GDP) data are used as predictors. 
Where a model can be developed in which these predictor series act on pa-
tents with a lag, forecasts can then be made for the future that are based on 
predictor values available today. Otherwise, the forecasting problem may 
just be transferred from one of forecasting the patent series to one of fore-
casting the values of the concomitant variables. This can in fact make 
sense if the concomitant variable is something important, such as GDP, 
where considerable forecasting efforts are available from outside agencies 
for different purposes. 

As with more straightforward linear regression modelling in a conven-
tional statistical setting, simple approaches such as the self determining 
models can be formulated with ordinary algebra while more complex mul-
tivariate models are manageably represented using matrix and vector ex-
pressions. 

These approaches can be used pragmatically, that is without worrying 
too much about the underlying economic mechanism. Indeed, for the lim-
ited problem of forecasting future numbers of total patent filings, a mecha-
nism may not be needed if the forecasting performance is sufficiently high. 

There are of course many developments in time series that have been 
ignored in the above description, e.g. Nonlinear time series regression 
methods (Tong, 1990). However we suggest that the methods should be 
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kept simple unless evidence emerges that a more complicated formulation 
is required.  

3.1 Econometric methodology – cointegration, vector 
autoregression, error correction models and count data 
analysis 

Now, we would like to look a little closer at ways that the economic pro-
cess can be taken into account. The following suggestions involve the 
VAR methodology but also involve cointegration analysis, error correction 
models and count data models that otherwise received little attention with-
in the projects that were carried out in the research programme.  

The general-to-specific econometric modelling approach advocated by 
Hendry (1986, 1993, and 1995) can be used in the modelling and forecast-
ing of patent application filings. However, to be consistent with our stated 
aim in the last section to keep modelling simple, we suggest that even the 
initial general specification should not be too elaborate. The general-to-
specific modelling approach is a relatively recent strategy used in econo-
metrics. It attempts to characterize the properties of the sample data in 
simple parametric relationships that remain reasonably constant over time, 
account for the findings of previous models, and are interpretable in an 
economic and financial sense. Rather than using econometrics to illustrate 
theory, the goal is to “discover” which alternative theoretical views are 
tenable and test them scientifically. The general-to-specific approach starts 
with over-parameterized models (in terms of lags and variables) and 
through specification tests reduces to a parsimonious representation. 

Consider for example a plan to develop models to describe patenting at 
the EPO by applicants from various countries using this approach. The ini-
tial models can rely on a database that would at a minimum include the fil-
ings from various countries at the EPO, domestic filings, R&D measures, 
and real GDP. There may be a long-run relationship in the level or accu-
mulated R&D effort and patenting activity. Basic scientific developments 
and technological progress can lead to important or break-though innova-
tions, which produce large flows of patent activity and filings. Also, the 
size of the domestic market for innovation can influence the propensity to 
file a patent at the EPO. The mechanism of the patent system, which in-
volves a priority forming first filing at one office that is followed by sub-
sequent filings at other offices, suggests that there is a lag between the 
domestic filings and subsequent filings at the EPO. Real GDP captures the 
demand for new products, processes, and services. In the short run there 
can be another relationship between year-to-year changes in R&D effort, 
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which provides incremental technological improvements, and modifica-
tions that affect patent application filings in the short run. In the next or fi-
nal stage the national level models can be combined in either a panel data 
framework or in a system of equations. 
  Once the variables have been selected, the process begins with examin-
ing the time series properties of the data. The (statistical) implication of a 
series with a unit root is that it is non-stationary or integrated of order one, 
I(1). There is no tendency towards a mean value and the standard error is 
not defined. We can look at the change of these series or their growth rates 
and these will be stationary with a defined mean and standard error. Sim-
ple univariate forecasting models can be developed based on the time se-
ries properties. These models can be used as a comparison for the econo-
metric models. In some cases, macroeconomic series with unit roots tend 
to “trend” together or are cointegrated. They might not synchronously rise 
and fall every year, but in the long run they move together. Examples of 
this include exchange rates and interest rate differentials, consumption ex-
penditures and (disposable) income, levels of sales and inventories or capi-
tal stock, short run and long-run interest rates, and patenting activity or fil-
ings and R&D effort. These examples represent equilibrium relationships 
that are consistent with economic theory and intuition. The standard test 
procedure follows the multivariate cointegration approach of Johansen 
(1988).  

The procedures begin with a multivariate specification. Patent filings 
can be represented as the flow of new knowledge which is a function of 
the stock of knowledge derived from previous patents. The labor effort de-
voted to knowledge production can be represented by R&D effort and real 
GDP. A preliminary national level VAR model might look like: 
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where EPOFil are the filings at the EPO, RD is a measure of R&D effort, 
RGDP is real gross domestic product, and DOMFil are first filings nation-
ally or the size of the domestic innovation market. Patent application fil-
ings are an indicator for knowledge production. Country specific sub-
scripts are omitted for simplicity here, but specific models may be 
developed for each country. A(0) is a set of deterministic variables like 
constant, trend, or dummies for changes in patenting rules. The specifica-
tion and interpretation of these variables will be discussed shortly. A(L) is 
a lag polynomial operator (seee also Chap. 4 and Chap. 6), X are other ex-
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ogenous variables, contemporaneous and lagged depending on the con-
formable operator B(L). The term e represents a vector of disturbances 
with means of zero, constant variance covariance matrix, and serially un-
correlated disturbances. 

The long-run properties of trending variables can be used to explain 
growth or speeds of adjustment to equilibrium over time through an error 
correction (ECM) model. A special case of the ECM is the partial adjust-
ment model. The ECM captures both the short-run dynamics and the long-
term trends in patent filings. The specification is in growth rates or first 
differences in natural logarithms. This approach avoids the resulting non-
sense or spurious regression problem when the data series are I(1). Re-
search by Diebold and Lutz, 2000 and Clements and Hendry, 2000 suggest 
that the cointegration testing and possibly an error correction model is the 
appropriate methodology to use for estimation and forecasting purposes. 

Exogeneity is an important conceptual and empirical issue for inference 
analysis, forecasting, and policy analysis in the presence of cointegration. 
Ericsson and Irons (1994) discuss these issues and the appropriate empiri-
cal tests. Joutz and Maxwell (2002) have applied these techniques in mod-
elling and forecasting high yield bonds. The factorization or conditioning 
of models following these tests suggests the appropriate specification of 
the forecasting models.  

Cointegration tests are a multivariate form of integration analysis. Indi-
vidual series may be I(1), but a linear combination of the series may be 
I(0). The error correction model is a generalization from the traditional 
partial adjustment model and permits the estimation of short-run and long-
run elasticities.  

An approach to this is based on the findings of Nelson and Plosser 
(1982), in which many macroeconomic and aggregate level series are 
shown to be well modeled as stochastic trends, i.e. integrated of order one, 
or I(1). Simple first differencing of the data will remove the non-
stationarity problem, but with a loss of generality regarding the long run 
“equilibrium” relationships among the variables. 

Engle and Granger (1987) solve this filtering problem with the cointe-
gration technique. They suggest that if all, or a subset of, the variables are 
I(1), there may exist a linear combination of the variables which is station-
ary, I(0). The linear combination is then taken to express a long-run “equi-
librium” relationship. Series which are cointegrated can always be repre-
sented in an error correction model. The error correction model is specified 
in first differences, which are stationary, and represent the short run 
movements in the variables. When an error correction term is included in 
the model, the long-run, or equilibrium, relations in patent activity are ac-
counted for. Lags of the independent and dependent variables may be in-
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cluded to capture additional short- and medium-term dynamics of patent-
ing activity. The advantage of the first difference model is that the specifi-
cation is stationary so that estimation and statistical inference can be per-
formed using standard statistical methods. The contemporaneous 
coefficients are interpreted as short run elasticities. 

The vector(s) obtained in the cointegration analysis represent the long-
run relationship among the variables. To model patent filing or activity 
more generally, however, a short-run error correction model is employed. 
The error correction framework models the variables in differences, and 
then the coefficients on the differenced variables correspond to short-run 
elasticities. The model furthermore contains an error correction term, 
ECM. This term is obtained from the long-run relationship and expresses 
deviations in patent filing (knowledge production) from its long-run mean. 
The coefficient in front of the ECM term measures the speed of adjustment 
in current consumption to the previous equilibrium demand value. The 
model in its most general form is as follows: 

tieECMxyy ttitiitit ,,11      

where y are the dependent variables, x is a vector of independent variables 
and ECM is the error correction term.  

Once these first round models are built, the effort can turn to simultane-
ous modelling of the patent filings at the EPO. There are several approach-
es that can be considered. These will depend on data quality, sample size, 
and results from the preliminary models. 

One approach is to use dynamic panel data techniques. In a panel data 
setting, there are time-series observations on multiple countries. We can 
denote the cross-section sample size by N, and, in an ideal setting, have 
t=1,...,T time-series observations covering the same calendar period, a bal-
anced panel. In practice, it often happens that some cross-sections start ear-
lier, or finish later. When T is large, N small, and the panel balanced, it is 
then possible to use the simultaneous-equations modelling procedures. If T 
is small, and the model is dynamic (i.e. includes a lagged dependent varia-
ble), the estimation bias can be substantial (see Nickell, 1981). Methods to 
cope with such dynamic panel data models include the GMM-type estima-
tors of Arellano and Bond (1991), Arellano and Bover (1995), and Blun-
dell and Bond (1998). Li, Maddala, Trost, and Joutz (1997) have used 
shrinkage estimation techniques for ECM modelling of energy demands. 

The second approach uses the simultaneous-equation modelling frame-
work. The approach may start with the unrestricted VAR and impose con-
ditions on the “exogeneity” of the variables and the variance-covariance 
matrix. 
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It should be noted that patent filings are count data in nature (e.g. non-
negative integers). In that regard, a complementary approach is to use 
count data analysis.7 Under this approach, the researcher would work di-
rectly with the raw data. Patent counts would not be transformed (for ex-
ample, through differencing, expressing filings as ratios of other variables 
like labor or GDP, and/or taking logarithms); otherwise by definition they 
would no longer be count data. In working with raw data, however, we 
would encounter issues concerning the stationarity of the variables; the pa-
tent counts could be integrated of order 1. Secondly, the number of filings 
is generally non-zero and generally “large” in value for most countries dur-
ing most periods. Relatively few zeros or small numbers (e.g. under 20) 
are encountered. The advantages of using count models are therefore not 
especially great for international patent filing data. Nonetheless, future 
work could better incorporate count data modeling in patent forecasting 
analyses. 

4 Conclusions 

Some of the approaches described in Sect. 3.1 have been applied to model-
ing the development of knowledge using USPTO patent data (Abdih and 
Joutz, 2005). This seems to be a good path to follow in future approaches 
to EPO data. It would be possible to take even deeper account of econo-
metric theory in formulating time series based regression models. For ex-
ample, a commonly used approach in macro-economic model building is 
to posit a model including a whole set of contributory variables, to test and 
isolate for exogenous versus endogenous effectors, and then to isolate 
combinations of endogenous effectors in reduced form equations that can 
be used for the actual fitting (Favero 2001). This approach is of importance 
when looking at frequently measured sets of correlated variables 
(e.g. interest rates, GDP, etc.), but may be more suitable for considering 
policy implications and intervention analysis, rather than for forecasting 
numbers of patent filings from historical annual counts. 

The knowledge processes that are considered are amenable to varying 
interpretations in terms of modeling approaches. It remains an open ques-
tion as to whether a detailed examination of knowledge production is ap-
propriate when constructing a forecasting model for budgetary purposes. 
This is because the data that are likely to be available for modeling may 
lack the richness required for uncovering the processes that are described. 

                                                      
7  See the seminal work of Hausman et. al. (1984). 
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Nevertheless, any simplified model that is used for regression analysis 
should at least be consistent with an accepted underlying mechanism of 
knowledge production.  

However, the studies in the following chapters do not generally take up 
on the suggestions made here. Differencing as a form of dealing with coin-
tegration is approached via Box-Jenkins ARIMA methodology in Chap. 4 
and Chap. 6, while in Chap. 5 Blind uses an alternative approach that uses 
a trend effect as an additional variable, and in Chap. 7 an extension of the 
approach from Sect. 2 of this chapter is used. The various approaches in 
the following chapters are practical and useful methods for the problem at 
hand.  
 


